

Physics and ART

Robert Streubel

Physics and Astronomy

Email: <u>streubel@unl.edu</u>

2021 Nebraska Physics & Astronomy Fall Summit

Robert Streubel | <u>streubel@unl.edu</u>

Everyone Perceives the World Differently

Perception

The World as Will and Representation (written in my home town—1818)

- We perceive the world as we "want" through our *biased, mediated senses*
- How do others perceive us, our surroundings?
- What is the actual objective state (truth)?
- Does it even exist?
- How do we know whether we are awake or asleep?

This is not only a philosophical questions!

• Ancient "The Matrix"

Physics and Art

Integrating arts with sciences enhances inclusion, dissemination, understanding, education.

Creativity and creation

Rational, logical Precise, approximative Abstract Mathematical equations

Seeks to relate phenomena of nature to mathematical constructs and predict causality Emotional Abstract Technical Perspective, colorspace

Man-made visualization or demonstration Cave drawing, sculptures, light, materials sciences, virtual reality

A picture speaks more than thousand words You'd better spend thousand words when thinking about creation.

Goals

Make STEM education more interesting and less abstract

Engage students and general public

Improve conceptual understanding

Visualize physical mechanisms to foster understanding

Soften boundaries between natural and liberal sciences

Create art from physical principles

Straights and Circles

Attention to details and precision. Perseverance. Hand drawing and/or computing skills.

 $\left(\sin\frac{x}{N} + \phi, \cos\frac{y}{M}\right)$

Lissajous Curves

Harmonograph with Coupled Pendula

Eigenfrequency should be slightly different.

[1] https://sites.dartmouth.edu/biomed/2015/04/21/the-harmonographa-new-exhibit-at-the-matthews-fuller-health-sciences-library
[2] http://harmonographs.freewebspace.com/photo.html
[3] Copyright © Conor Lawless

Catching Attention

b

 Robert Streubel | <u>streubel@unl.edu</u>
 [1] Nat. Commun. 11:5444 (2020); Col. Res. Appl., 29, 20 (2004).

Rayleigh Scattering

Robert Streubel | <u>streubel@unl.edu</u> [1] NASA; https://en.wikipedia.org/wiki/Rayleigh_scattering

Huygens' Principle

Refraction $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Interfaces are defects that scatter. Every point on wavefront is the source of spherical wavelets that interfere with each other.

Optical Illusions by Refraction and Reflection

Robert Streubel | <u>streubel@unl.edu</u> [1] https://phys.org/news/2011-08-wrong.html

Thin-Film Interference

Prism Refraction

Rainbow Formation by Droplet Refraction

Refractive index of water: 1.331; 1.332; 1.333; 1.335; 1.338; 1.342

Color of rainbow is caused by different droplets (red from higher or closer droplets)

smaller rainbows

Interference and Polarization Alternation by Crystals

Moire Interference Pattern in Misaligned Lattices

Proper electron orbital hybridization enhances conductivity

Kikuchi Pattern by Electron Backscatter Diffraction

Multiple inelastic scattering events in thick crystals

Diffuse scattering due to phonons

Intersections indicate crystal axes

Electromagnetic Waves

Interference

Superimposition of *coherent* waves causes interference fringes

Temporal coherence

Spatial coherence

In-line and off-axis holography

Scattered and un-scattered waves

Multiple coherent sources

Vortex formation in dipolar systems 🐱

• 0

0.0

0

- L & & X X X X X X Y K Copyright © Robert ----XAAXXXXXXXXXXXXXXXXXXXXX \$ 8 ARXXXXXXXXXXXXXXXXX 8 -KKXXXXXXXXXXXXXXXXXXX KKEE+ + + + + + + B ANNE VEETCANAVETE * # # # # - * * * 4 4 14 12 **** 4 A REEK A REFERRE REFERENCE SER A A A A A A A A ¥ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ l'opological magnetic states in amorphous films 🥖 🤞

Vortex Beams with Orbital Angular Momentum

Five-fold quasicrystal

Fraunhofer diffraction pattern

Copyr ,ht © Urs Schmid, Michael Rule

Topological Magnetic States

Robert Streubel | <u>streubel@unl.edu</u>

3D Printed Mathematical Art

Copyright © B. Grossman

The Persistence of Vision Raytracer

[1] Copyright © Robert McGregor
 [2] Copyright © Janet Lowry
 [3] Copyright © Friedrich A. Lohmueller

Mathematical equations and physical properties of light

Magnetization in Superparamagnetic Nanoparticles

Wet chemical etching of chromium

Copyright © Robert Streubel

Coexistence of Regular and Chaotic Motion

Circular motion experiencing a constant force *K Angular dependent torque*

Phase space representation (theta, p)

 $\theta_{n+1} = \theta_n + p_n$ $p_{n+1} = p_n + K \sin \theta_{n+1}$

K could be air flow or gravitation.

Quantum-Mechanical Oscillator

32

Air Vortices

Turbulences form at edge and move faster for small separation.

Robert Streubel | <u>streubel@unl.edu</u>

Air Turbulences Around Wings

Reynold's number is about 3 million. Vortices with opposite circulation form on opposite sites and bound or annihilate.

Robert Streubel | <u>streubel@unl.edu</u>

Reynold's number is about 10 thousand.

Robert Streubel | <u>streubel@unl.edu</u>

Copyright © Matthias Maier 35

Ferrofluids

Robert Streubel | <u>streubel@unl.edu</u>

Copyright © Linden Gledhill 36

[1] https://pinterest.com/Spikeartc/cool-ferrofluid-pictures/
[2] https://fractalenlightenment.com/14637/artwork/fractal-sculptures-with-magnetic-ferrofluid
[3] https://pinterest.com/Spikeartc/cool-ferrofluid-pictures

Ferrofluids

Ferrofluids

Interplay between reducing surface tension (sphere) and Zeeman energy (chain).

Robert Streubel | <u>streubel@unl.edu</u>

Ferrofluids in Motion

Shape and size of droplets depends on magnetic field direction, strength, and gradient.

Robert Streubel | <u>streubel@unl.edu</u>

Copyright © Antoine Delach, Valere Amirault, Teurk 40

Let's Make a Splash

Robert Streubel | <u>streubel@unl.edu</u>

Copyright © Linden Gledhill